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ABSTRACT
Multi-task Learning (MTL) aims to learn multiple related tasks si-
multaneously instead of separately to improve generalization per-
formance of each task. Most existing MTL methods assumed that
the multiple tasks to be learned have the same feature representa-
tion. However, this assumption may not hold for many real-world
applications. In this paper, we study the problem of MTL with
heterogeneous features for each task. To address this problem, we
first construct an integrated graph of a set of bipartite graphs to
build a connection among different tasks. We then propose a multi-
task nonnegative matrix factorization (MTNMF) method to learn
a common semantic feature space underlying different heteroge-
neous feature spaces of each task. Finally, based on the common
semantic features and original heterogeneous features, we model
the heterogenous MTL problem as a multi-task multi-view learn-
ing (MTMVL) problem. In this way, a number of existing MTMVL
methods can be applied to solve the problem effectively. Extensive
experiments on three real-world problems demonstrate the effec-
tiveness of our proposed method.

1. INTRODUCTION
In many real-world scenarios, one needs to collectively solve a

number of related tasks, where little side information (e.g., labels)
is available for each task. To solve this kind of problems, multi-task
learning (MTL) has been proposed [5].

Most existing MTL methods assumed that all the tasks have the
same feature representation as shown in Figure 1(a). Though this
assumption holds for some applications, it may not hold for many
other applications. For example, given an emergent event in social
media, suppose that one task is to predict whether a social post in
text is related to the event, and another task is to predict whether a
social image is related to the event. On one hand, these two tasks
are related as they are to make predictions on the same event. On
the other hand, for each of these two tasks, label information is lim-
ited as the event is emergent. Therefore, MTL methods are desir-
able to solve these two tasks. However, most existing MTL meth-
ods are not applicable here because the feature representations of
these two tasks are totally different (i.e., image pixels v.s. textual
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words) as shown in Figure 1(b). In this paper, we proposed a new
method to solve the problem of MTL with heterogeneous feature
spaces.
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(a) Homogeneous Features(a) Homogeneous Features
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Figure 1: Two kinds of MTL problems

Our motivation is that though the instances of the different and
related tasks are represented in different feature spaces, they may
share a same semantic feature space. As in the example on social
media event prediction described above, though an event-related
image and an event-related post are represented differently, they
should share the same semantic meanings because both of them
describe the event. Once such a common semantic feature space
is discovered, it can be used to share knowledge among multiple
heterogeneous tasks, and thus improve their learning performance.

Specifically, in this paper, we assume multiple tasks share the
same output space (i.e., the class labels of different tasks are the
same or at least overlapping). Firstly, for each task, we build a
bipartite graph to model the relationship between the labeled in-
stances and the class labels. Secondly, based on the bipartite graph-
s of each task, we integrate them (i.e. the corresponding multiple
tasks) through the layer of the class labels. After that we further
build a correlation matrix between the class labels and the input
features for each task based on the integrated graph. Finally, we
propose a Multi-Task Nonnegative Matrix Factorization (MTNM-
F) method on the constructed correlation matrices as well as the
original instance-feature matrices, which consists of both labeled
and unlabeled data of each task, to learn a common semantic fea-
ture space underlying the multiple tasks. Once the semantic feature
space is learned, together with the original heterogeneous features
for each task, we can apply Multi-Task Multi-View Learning (MT-
MVL) methods to solve the target heterogenous MTL problem.

In summary, our proposed MTNMF method has several advan-
tages. 1) It solves the problem of heterogeneous multi-task learning
without requiring any correspondences between tasks. 2) It ful-
ly makes use of both labeled and unlabeled instances to learn the
common semantic feature space for multiple tasks. 3) The learned
semantic features and the original features can be concatenated to
form a MTMVL problem, where a number of existing MTMVL
methods can be applied.



2. RELATED WORK
In the past decade, MTL has attracted a lot of attention. Pre-

vious work on MTL was focused on learning multiple tasks with
homogeneous features. Most methods aim to learn common fea-
tures among different tasks [5, 2, 15], or common predictive struc-
ture underlying different tasks [1, 6], or common prior of model
parameters among different tasks [11, 21, 22].

Recently, several heterogeneous MTL methods have been pro-
posed. Zhang and Yeung [24] proposed the Multi-task Discrimi-
nant Analysis (MTDA) algorithm, which aims to learn transforms
for instances of heterogeneous features such that the transformed
instances of the same class from different tasks are closer to each
other. However, MTDA is a supervised learning method, which
fails to exploit unlabeled instances to learn to the transformation.
He et al. [14] also proposed the MUSH algorithm for heterogenous
MTL. However, in MUSH, some correspondence among inputs of
different tasks is assumed to be given in advance.

In transfer learning, there have been some methods proposed
for cross- domain/task learning with heterogenous features [25, 10,
20, 8]. However, different from transfer learning, the objective of
MTL is not to transfer knowledge from a domain/task to another
domain/task, but learn a prediction model for each task simultane-
ously by exploiting relatedness among the tasks.

Multi-Task Multi-View Learning (MTMVL) is a special setting
of MTL, where each task has multiple views rather than a single
view. State-of-the-art approaches to MTMVL include IteM2 [13],
which is a transductive learning method, regMVMT [23], CSL-
MTMV [16] and MAMUDA [17], which are inductive learning
methods.

3. PROBLEM FORMULATION
In this paper, we denote by X(i,j) the element in the i-th row and

j-th column of a matrix X , ∥ · ∥ the Frobenius norm, and Il the l×l
identity matrix. In addition, we denote by [N :M ] (N <M ) a set
of integers in the range between N and M inclusively.

Suppose we are given T related classification tasks. For each
task t ∈ [1 : T ], there are nt labeled and mt unlabeled instances.
The dimension of an instance of the t-th task is dt. A nonnegative
matrix Xt ∈ Rnt×dt ≥ 0 is used to denote the labeled instances
of task t, each row of which represents an instance. Accordingly,
Pt∈Rmt×dt ≥ 0 is used to denote the corresponding unlabeled in-
stances of task t. For simplicity, we suppose that the classification
tasks are binary, and different tasks have the same set of class label-
s. Let Yt ∈ [−1, 1]nt×1 be the label vector of the labeled instances
of task t.

4. MULTI-TASK SEMANTIC FEATURE LE-
ARNING

4.1 Connection among Multiple Tasks
Recall that, for each task t, we have a set of labeled instances

Xt and their corresponding labels Yt. Based on Xt, we first build
a bipartite graph to capture the relationship between the labeled
instances and the class labels. To be specific, we use a matrix Ut ∈
Rnt×C to represent the bipartite graph for task t, where C is the
number of classes1, Ut(i,j)=1 if the i-th instance belongs to the j-
th class, otherwise, Ut(i,j)=0. As the class labels of multiple tasks
are assumed to be the same or at least overlapping, the multiple
bipartite graphs can be integrated into a unified graph through the
layer of the class labels. An example of the integrated graph of a
pair of tasks (i.e., a pair of bipartite graphs) is shown in Figure 2.

1Note that in general, C can be larger than 2. For simplicity, here
we assume the multiple classification tasks be binary.
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Figure 2: Bipartite Graphs for Two Tasks
Based on the matrix Ut, which is used to represent the rela-

tionship between instances and classes, we can further generate
a correlation matrix Gt between input features and class label-
s for task t by setting Gt = Xt

⊤Ut ∈ Rdt×C , where Gt(i,j) =∑nt
k=1 Xt(k,i)×Ut(k,j), and Xt(k,i) ≥ 0 is the value of the i-th

feature of the k-th labeled instance of task t. It can be shown that
Gt(i,j) is large if there are many instances whose the values of the
i-th feature are large and class labels are the j-th class. This implies
that Gt(i,j) is large if the i-th feature and the j-th class have strong
correlation.
4.2 Semantic Feature Learning

For each task, to extract latent semantic features, one can apply
NMF to decompose Gt to latent factor matrices,

Gt = WtHt, s.t. Wt ≥ 0, Ht ≥ 0, Wt
⊤Wt = I. (1)

where Wt ∈ Rdt×k, Ht ∈ Rk×C , and k is the dimension of the
latent semantic space. Each column in Wt can be referred to as
a base vector of the latent space, which is represented by a linear
combination of the original task-specific features. The i-th column
of Ht can be referred to as the latent semantic representation for
i-th class. The constraint Wt

⊤Wt = I is to ensure the solution to
be unique and reduce redundancy [9].

For MTL, because the multiple tasks to be learned are assumed
to be related, it is more desirable to learn the semantic features
for each task jointly by exploiting their relatedness. In addition,
as from the integrated graph, the layer of label classes is shared
by all the tasks, intuitively, we can collectively learn Wt for each
task by enforcing the class representations {Ht}’s to be the same.
Therefore, we propose to decompose {Gt}’s jointly as follows:

min
Wt≥0,H≥0,Wt

⊤Wt=I

T∑
t=1

∥Gt −WtH∥2 . (2)

Note that the optimization problem (2) can facilitate knowledge
transfer among multiple tasks through sharing H in semantic fea-
ture learning for different tasks. However, (2) only makes use of
labeled data because Gt is constructed based on labeled instance
only. However, in MTL, because labeled data for each task are
scarce, the semantic features learned from (2) may not be robust
and reliable. Therefore, how to exploit unlabeled data in semantic
feature learning for different tasks is crucial. Intuitively, besides
performing collective NMF on {Gt}’s to learn Wt jointly, one can
also apply NMF on the original data, which include both labeled
and unlabeled instances, to learn Wt for each task. To be specific,
by defining X ′

t = [Xt;Pt] ∈ R(nt+mt)×dt , we can learn Wt by
solving the following NMF problem:

X ′
t = VtWt

⊤, s.t. Wt ≥ 0, Vt ≥ 0, Wt
⊤Wt = I, (3)

where Vt ∈ R(nt+mt)×k, Wt ∈ Rdt×k, and Vt is the new rep-
resentation of X ′

t under the new bases {Wt}’s. By combining (2)
and (3), our proposed Multi-Task NMF method for semantic fea-



ture learning can be written as follows:

min
Wt

⊤Wt=I
Wt,Vt,H≥0

T∑
t=1

(
∥Gt −WtH∥2 + αt∥X ′

t − VtWt
⊤∥2

)
, (4)

where αt>0 is a tradeoff parameter to balance the importance be-
tween the labeled and unlabeled data. For simplicity, αt is set to
1 in this paper, which means that we assume the two terms in (4)
be equally important. Note that the optimization problem (4) is not
convex for Vt, Wt and H jointly. To solve (4), we use an alter-
native optimization approach to alteratively optimize one variable
while fixing the other variables. The update rules of the alterative
optimization approach are summarized as follows:

Wt(i,j)←Wt(i,j)

√√√√ (GtH⊤ + αtX ′
t
⊤Vt)(i,j)(

WtWt
⊤(GtH⊤+αtX ′

t
⊤Vt)

)
(i,j)

, (5)

H(i,j) ← H(i,j)

(∑T
t=1(Wt

⊤Gt)
)
(i,j)(∑T

t=1(Wt
⊤WtH)

)
(i,j)

, (6)

Vt(i,j) ← Vt(i,j)

(X ′
tWt)(i,j)

(VtWt
⊤Wt)(i,j)

, (7)

where Wt(i,j), Vt(i,j) and H(i,j) denote the (i, j)-th element of the
matrices Wt, Vt, and H , respectively. By applying the update rules
in (5), (6) and (7), the solution converges to a local optima. Existing
approaches to proving the convergence of the NMF algorithm can
be adapted to prove the convergence of our proposed algorithm.2

4.3 Learning Classifiers
For each task t, one can use the learned matrix Wt to map the

original data to the common semantic space underlying all the T

tasks via X
(c)
t =XtWt. Combining with the original features, in

total, there are T+1 views for a heterogeneous MTL problem with
T tasks. MTMVL techniques can be applied. In this paper, we
adopt the regMVMT algorithm [23]3.

5. EXPERIMENTS
5.1 Datasets and Preprocessing

In Table 1, Np and Nn are the numbers of positive and negative
instances, respectively. On the second and third datasets, different
tasks have some overlapping features. Besides comparing with het-
erogeneous MTL methods on the three datasets, we also compare
MTNMF with homogeneous multi-task learning baselines on the
second and third datasets.

Table 1: Statistics of Data Sets with Heterogeneous Features
Problem Task # Np Nn Feature #

20News & Image 6 986 ∼ 1,555 993 ∼ 1,427 900 ∼ 3000
Email Spam 15 200 200 996 ∼ 2583
Sentiment 4 1000 1000 1611 ∼ 2793

20Newsgroups & ImageNet Classification: The documents are
from the 20 Newsgroups dataset4, while the images are from the
ImageNet dataset5.

Email Spam Detection [3]: each task has a set of specific fea-
tures which only include the words appear in the corresponding
person’s emails. When conducting comparison experiments with
2Due to the limited space, the detailed proof is omitted.
3In general, any MTMVL method can be adopted.
4http://people.csail.mit.edu/jrennie/20Newsgroups/
5http://www.image-net.org/download-features

homogeneous MTL methods, we use another feature representation
for emails that is based on a unified vocabulary for all the tasks.

Sentiment Classification: we use the multi-domain sentiment
classification dataset [4]. The features are similarly constructed as
for Email Spam dataset.
5.2 Experimental Setting

For each configuration, we perform 10 random trials and report
the average classification accuracy.
5.2.1 The First Group:

TSVM: Transductive SVM (TSVM) [18] is a semi-supervised
learning method, we use the SVM-light6 implementation for the
TSVM classifier.

NMF: we first apply NMF on both the labeled and unlabeled
data to learn semantic features for each task separately as shown
in Eq.(3), and then train a TSVM classifier for each task with the
learned semantic features separately.

MTDA: Multi-task Discriminant Analysis (MTDA) [24] is a multi-
task learning algorithm that can deal with heterogeneous features
across different tasks.
5.2.2 The Second Group:

Four multi-task learning algorithms aim at problems with ho-
mogeneous features are tested, they are GMTL [19], rMTFL [12],
DirtyMTL [15] and RMTL [7].

5.3 Experimental Results
5.3.1 MTL Problems with Heterogeneous Features

Comparison results of MTNMF with the first group of baseline
methods on the three datasets are shown in Tables 2, 3, 4 respec-
tively. As shown on the tables, MTNMF performs better than NMF
though both of these two methods are based on nonnegative matrix
factorization. This is because the semantic features for different
tasks extracted by MTNMF are not only based on the factorization
on the original data matrix, but also based on the factorization on
the integrated bipartite graphs which capture the correlation among
different tasks. Moreover, in general, multi-task learning methods,
MTNMF and MTDA, outperform the methods that learn differen-
t tasks individually, such as TSVM and NMF. This is because for
each task, labeled information is too sparse to learn a precise pre-
diction model. Last but not least, the superiority of MTNMF over
MTDA suggests that the semantic features learned by MTNMF is
more effective for solving multi-task learning problems with het-
erogeneous features.

Table 3: Experimental Results for 20Newsgroups&Imagenet
Task 1 2 3 4 5 6 mean

TSVM 70.2 81.9 76.5 72.6 78.5 81.3 76.8
NMF 52.1 70.1 63.3 62.7 64.5 65.5 63.0

MTDA 77.3 83.6 77.7 77.2 80.7 83.2 79.9
MTNMF 78.9 84.5 78.5 78.6 82.8 86.6 81.6

Table 4: Experimental Results for Sentiment Problem
Task 1 2 3 4 mean

TSVM 62.5 61.8 67.0 74.3 66.4
NMF 58.8 59.4 59.8 57.7 58.9

MTDA 67.4 68.0 71.8 74.0 70.3
MTNMF 68.6 69.2 73.8 75.6 71.8

In the second series of experiments, we compare performance
between different methods under varying numbers of labeled and
unlabeled training data. Note that the sizes of labeled and unlabeled
data are set to be the same for this series of experiments. The results
are shown in Figure 3, where both average results and standard
deviation of 10 random runs are reported. As can be seen from the
6http://svmlight.joachims.org/



Table 2: Experimental Results for Email Spam Problem (300 instances, 150 labeled and 150 unlabeled)
Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mean

TSVM 84.9 83.1 78.5 78.4 86.9 65.1 76.3 85.7 86.2 85.4 73.0 76.8 87.2 64.0 73.8 79.0
NMF 83.8 67.7 62.3 65.0 60.7 55.2 65.0 73.1 61.6 80.0 60.0 53.3 63.3 64.3 56.4 64.8

MTDA 91.0 93.0 93.0 93.7 88.2 87.5 85.8 93.4 93.1 92.8 87.3 82.6 93.6 86.8 89.4 90.1
MTNMF 94.2 95.7 96.0 95.7 91.4 89.0 91.7 95.7 95.2 92.8 90.7 85.3 94.9 86.7 91.5 92.4

figure, MTNMF performs best under different number of training
data for these 3 problems, which shows the advantage of learning a
shared latent semantic space from multiple tasks.
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Figure 3: Experimental Results for 3 Problems (Heterogeneous
Features)
5.3.2 MTL Problems with Homogeneous Features

To conduct comparison experiments with homogeneous MTL
methods, i.e., the second group of baseline methods, we use the
Email Spam Detection and Sentiment Classification dataset with
a unified feature representation for different tasks as described in
Section 5.1. As the baseline methods are supervised learning ap-
proaches, in this series of experiments, we only use labeled train-
ing data for all the comparison methods including MTNMF. The
comparison results in terms of classification accuracy are shown in
Figure 4 under varying sizes of training instances. As can be seen
from the figures, by extracting semantic features for each task col-
lectively, MTNMF can also boost the performance of homogeneous
MTL.

0 100 200 300 400

80

85

90

95

Training Data Number

M
e
a
n
 A

c
c
u
ra

c
y

DirtyMTL

GMTL

rMTFL

RMTL

MTNMF

(a) Email Spam

0 500 1000 1500

60

65

70

75

80

Training Data Number

M
e
a
n
 A

c
c
u
ra

c
y

DirtyMTL

GMTL

rMTFL

RMTL

MTNMF

(b) Sentiment
Figure 4: Experimental Results (Homogeneous Features)

6. CONCLUSIONS
In this paper, we propose the Multi-Task Nonnegative Matrix

Factorization (MTNMF) method to solve multi-task learning prob-
lems with heterogeneous feature spaces. In MTNMF, a set of inte-
grated bipartite graphs are built based on the labeled data to model
the relationship between original features and class labels among
multiple tasks. A collective NMF method is then proposed to ex-
tract common semantic features from the integrated bipartite graphs
as well as the unlabeled data for different tasks. Experiments on 3
real-world problems demonstrate the effectiveness of the proposed
method.
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